

International Technical Meeting "Seismic Safety of NPPs" Tivoli (Rome, IT) - March 25-26, 2010

Seismic Hazard and site-response analyses Roberto Romeo

Ground Motion Hazard (1/2)

- Most of the international regulatory guides on NPPs (US R.G. 1.165, 1997 and R.G 1.208, 2007; IAEA NS-G-3.3, 2002 and its update DS422, 2009) relies on both deterministic (DSHA) and probabilistic (PSHA) seismic hazard analyses for the design of NIs
- They jointly benefit from a mutual interaction since ...

Ground Motion Hazard (2/2)

- DSHA provides a check of the reliability of PSHA at very low frequencies of exceedance (robustness of estimated GM values versus those derived from the maximum credible ones), and
- ... vice versa PSHA allows selecting reference earthquakes (for deterministic analyses) within a probabilistic framework through the hazard deaggregation technique

frequency-magnitude relation for each source

Frequency-magnitude relationships

- To assess earthquake recurrence rates a well documented (or recorded) seismicity is compulsory
- Only few countries in the world have a well documented historical seismicity (e.g., China and Italy have seismic catalogs that start since 1000 A.D. or earlier)
- Instrumental seismic catalogs may be useful only for very active regions (inter-plate regions), where the earthquake cycle is short enough to be captured by recorded seismicity

Global Seismic Hazard Assessment

Shared information on seismicity and seismotectonics brought to integrated SH assessments

Tivoli (Roma) – March 25-26, 2010

Seismic Hazard Maps

Many countries have **Seismic Hazard Maps** (SHMs) at different exceedance probabilities for the purpose of matching a performancebased approach in the engineering design

SHMs for conventional versus nuclear engineering design

- Frequencies of exceedance in conventional engineering design are in the order of [some units of] 10⁻² ÷ 10⁻³ (ULS in common PBEED)
- In the nuclear engineering design frequencies of exceedance for SL-2 (or SSE) are in the order of 10⁻³ ÷ 10⁻⁵
- These lower probabilities require longer seismicity records and/or greater magnitude observations relying on the knowledge of active

faults

Active Faults

Improved earthquake monitoring and advances in remote sensing increase our knowledge about location of active faults

Faults and Seismicity

Faults linked to seismicity extends our capacity to investigate extreme events (at very low frequencies of exceedance)

Global Seismographic Network: isaoedoner92020vbitbadboartd49tatations

GSN is supplemented by regional and local seismic networks

Recorded Ground Motions

The great improvement of recording capability brought in the last decades to record a large number of strong ground motions

The perception of ground motion hazard: beformt950er...

Cedar Hill 1.67g, R12, Vs 255 (Northridge 1994, M6.7)

Site-response analysis

Ground Motion Hazard PSHA ↔ DSHA

Local Seismic Response Analysis

Design Basis for Vibratory Ground Motion (SSE and OBE)

Site response evidences: Service Hall (KK-NPP) Unit 5 R/T

Recorded accelerations in vertical arrays

Elastic soil behavior (Unit 5) increased freefield ground accelerations by a factor 3 Non-linear soil behavior (Serv. Hall) decreased ground accelerations by a factor 2

Other Geologic Design Criteria than vibratory effects related to seismic actions (US R.G. 1.208 – IAEA NS-G-3.3)

- Determination of Need to Design for Surface Faulting (permanent ground displacements)
- Determination of Design Bases for Seismically Induced Floods and Water Waves
- Determination of Need to Design for Soil Stability conditions, such as liquefaction, landslides, settlements and loss of bearing capacity

Conclusions

- Ground motion hazards are nowadays based on a combined probabilistic and deterministic approach to fully account for inherent uncertainties, to support each other and to provide a more reliable design
- Improved earthquake monitoring capability and knowledge about active faults give evidence that ground motion values may be larger than considered in the past with relevant implications on the design
- Site-specific vibratory ground motion and inducedeffects may strongly affect the stability and design criteria of critical facilities such as NPPs

Hazard deaggregation

Response spectra

Global Seismographic Network: now over 200 broadband stations

The perception of ground motion hazard: ... and after

Cedar Hill 1.67g, R12, Vs 255 (Northridge 1994, M6.7)

Figure 2.2. Distribution of the operational world wide digital stations

1984

- ~45 digital stations GDSN, RTSN, IDA and GEOSCOPE 2002 ~125 GSN stations
- ~200 station total with FDSN partners

A Global Digital Seismic Array

featuring real-time satellite telemetry from one hundred modern seismographic observatories

