

International Technical Meeting on "Seismic Safety of NPPs"

Tivoli (Roma) - Italy March 25-26, 2010

Seismic safety requirements for NPP and experience feedback in Japan

Japan Nuclear Energy Safety Organization (JNES) Seismic Safety Division

Japan Nuclear Energy Safety Organization

Fire of transformer at unit 3

 Part : joint part
Failure mode : bending by soil behavior

Distance Stress Stress

□ Hyogo-Ken Nambu Earthquake (1995.1)

NES

Triggered revision of safety Guide Point source (Ohsaki Spectrum) → Active fault

Distribution of predicted PGA by Fukushima's attenuation relation (BSSA, 1990)

Red lines indicate area of I_{JMA}=VII, site condition is empirically corrected.

> High PGA area was elongate and well agree with high intensity area.

Seismology, 5, pp.63-72.

> INES

□ Hyogo-Ken Nambu Earthquake (1995.1):

Nuclear Safety Commission revised

D JNES 🗠

"Reviewing Guide for Seismic Design of NPP " (2006.9)

- Require remained risk assessment due to exceedance of expected earthquake
- Adopt "Fault Source Model prediction"

Miyagi-Oki Earthquake (Onagawa NPP Shut Down, 2005.8),
Noto-Hanto-Oki Earthquake (Shika NPP Shut Down State ,2007.3) and
Suruga Bay Earthquake (Hamaoka NPP Shut Down State ,2009.8):
Slightly over design level and no Influence on standards

Niigata-Ken Chuets-Oki Earthquake (2007.7)

Kashiwazaki-Kariwa NPPs were safely shut down, but lower seismic grade facilities were damaged by the extreme ground motion.

Flow of Seismic Reevaluation According to New Seismic Regulatory Guide

A. Geological survey of active faults

📂 JNES

New Design Basis Ground Motions

Plant sites	Contributing earthquakes	New DBGM Ss*	Old DBGM S2	
Tomari	Defuse seismicity	550 Gal	370 Gal	
Onagawa	Soutei Miyagiken-oki (M8.2)	580 375		
Higashidoori	Defuse seismicity	450	375	
Fukushima	Earthquake near the site (M7.1)	600	370	
Tokai	Defuse seismicity	600	380	
Hamaoka	Assumed Tokai (M8.0), etc.	800	600	
Shika	Sasanami-oki Fault (M7.6)	600	490	
Tsuruga	Urazoko-Uchiikemi Fault (M6.9), etc. →Mera-Kareizaki-Kaburagi	650→ <mark>800</mark> **	532	
Mihama	Ē; (Ħ⁄-Ă) Fault (M6.9)→B-Fault(M7.7)	600→ <mark>750</mark> **	405	
Ooi	C, Fo-A Fault (M6.9)→Fo-A+Fo-B(M7.4)	600→ <mark>700</mark> **	405	
Takahama	Fo-A Fault (M6.9)	550	370	
Shimane	Shinji Fault (M7.1)	600	456	
Ikata	Median Tectonic Line (M7.6)	570	473	
Genkai	Defuse seismicity	500	370	
Sendai	Defuse seismicity	540	372	
Kashiwazaki- Kariwa	F-B Fault (M7.0), expanded NCO Nagaoka-plain-west Fault (M8.1)	2300 (#1 side) 1209 (#5 side)	450	

Note: * Black : Ss by interim report (March 2008).

** Red : still under examination (29 June 2009)

Infomation of Earthquake

— 🏷 JNES

Amplification of Earthquake Ground Motion

🐎 JNES

 Why did 3 pulses happen ?
Why did the observed seismic motions exceed design level ?
Why PGA at Unit 1 was the largest as more than double of the design level, although it was located most far from the epicenter ? 🏷 JNES

Modeling of Source Fault and Sediments

Strong pulses came from 3 asperities.

http://www.rri.kyoto-u.ac.jp/jishin/eq/niigata_chuetsuoki_5/chuuetsuoki_20080307.pdf 12

Japan Nuclear Energy Safety Organization

Amplification of PGV between 3D and 1D

= 🏠 JNES

Amplification of seismic wave from seismic bedrock to free base stratum at Unit 1 side is estimated 1.5 times as large as at Unit 5 side.

Summary of Factor Analysis

🏷 JNES

(TEPCO, 2007.12.25) (partially retouched)

16

— 🏷 JNES

3-D FEM model, considering (1) flexure of floor and basemat, (2) interaction between soil&building, and (3) constraint turbine building.

Reevaluation of seismic safety at KK (called back check)

At establishment permission, fault ② was estimated to be 7~8km (M<6.5) and non active fault.

🏷 JNES

— 🐎 JNES —					Japan Nuclear	Energy Safety	Organization
At Reactor building bedrock Chuetsu-oki	Unit 1	Unit 2	Unit 3	Unit 4	Unit 7	Unit 6	Unit 5
Earthquake (observed)	680	606	384	492	356	322	442
New design basi seismic motion Ss	is 829	739	663	699	642	656	543
Old DBSM: S2	273	167	193	194	263	263	254
At basemat							
Outcrop of		Below ground			Below ground		level –146m
base stratum	Below ground level –289m	level –255m	Below	r ground level –290m	-167m		
Design-basi seismic mot (Old DB	s tion Ss SM:S2)	2,28 (450))			1,156 (450)	
Static force of 3 times of conventional building is preserved for reactor building.							

Quoted from Tepco HP 19

Response Spectra of Design-basis Seismic Motion ^{Nycl} Outcrop^{afety} Basiz^{ation} stratum)

Part of Logic Tree

Basic path

Refer Unified Hazard Spectrum

Influence of the longest case is considerable in longer predominant period range than 2.0 second from 10⁻⁵.

Figure was excerpted from the pamphlet of Toshiba Corporation and made.

Example of Evaluation standards for equipment integrity

• Moment at final allowable stage IIIAS (JEAG4601 of an Japanese guide) is 1.5 times of the yielding in some case.

🏷 INES

• The yield stress (Sy) in this condition was adopted as a criteria of selecting target equipments for additional inspection.

An example: reactor containment vessel-related equipment

gradient changes of buildings

Unit	Building	Max gradient change from (2) to (1)	
	description	Gradient	
	Reactor building	ca.1/25,000	
	Turbine building	ca.1/53,000	
Unit 2	Reactor building	ca.1/14,000	
	Turbine building	ca.1/10.000	
Linit 2	Reactor building	ca.1/16,000	
	Turbine building	ca.1/14,000	
Linit 4	Reactor building	ca.1/22,000	
01111 4	Turbine building	ca.1/6,700	
L Init 5	Reactor building	ca.1/10,000	
	Turbine building	ca.1/7,800	
Unit 6	Reactor building	ca.1/5,500	
	Turbine building	ca.1/15,000	
	Control building	ca.1/4,200	
	Waste disposal building	ca.1/9,000	
	Reactor building	ca.1/5,000	
	Turbine building	ca.1/10,00	

TEPCO, February 15, 2008)		
Measurement		
(1)	After earthquake	2008 February
(2)	Before earthquake	2006 May

Gradient of the building can be judged sufficiently low compared with the subsidence limit level based on "Recommendation for the Design of Building Foundations" revised in 2001 (Architectural Institute of Japan).

(TEPCO, March 27, 2008)

Change in loads of equipment anchor etc. was evaluated to be about 0.1% and negligibly small. For control rod insertion performance, relative displacement between control rod and fuel assemblies is less than 0.1mm (design limit: 40mm).

Automatic shut down system is adopted in NPPs in Japan.

Working Group on the Operational Management and Evaluation of the Facilities Integrity

Insertion time evaluation of control rods for K-7

External power supply was continued from out of grid in the region, therefore emergency diesel generators did not start-up at the NCO earthquake,

Site investigation

Further Collaboration By EBP

fety Organization

Recommendation

🖄 INES

We came over heavy difficulties from NCO earthquake. Technically and scientifically, we learned many things. But the most important lesson learned is valuable collaboration with IAEA. Public respected high level authority in such emergency situation beyond national authorities. They desired whatever nuclear safety even inconvenience without NPPs. Actions of IAEA relieved this contradiction. We shall contribute to IAEA by providing our experiences and resources. It will enhance the IAEA SS practically. On the contrary, it will return to MS as great benefits. Your contribution to ISSC is really encouraged by the lesson learned in KK.

— 🏷 JNES -

Grazie molto!

Fine